POL 42340 Programming for Social Scientists: What you will know

after each class

Johan A. Elkink

20 October 2020

Contents

Week 1: Introduction

Using Python as calculator

Week 2: Variables and functions

Variableso
Functions e
Using default parameter values
Random numbers

Week 3: Conditions and flow

Assigning a comparison to a variable
While loops

Week 4: Loops and lists

Lists e e e e
Loops e
Dictionaries e

Week 5: Working with text

Conversion between numbers and strings
Input of text from theuser

Week 6: Object-oriented programming

Week 7: Working with files

Aninput file
Anoutput file

Week 8: Handling exceptions (and tuples)

Catching errors L
Tuples e

Week 9: Working with libraries and GUIs
Week 10: Computer simulations and visualisation

And the rest

o N

o o Ut &t [S2ENTNGN W wwiNo N

<

NeJ

10
10
10

11

11

12

This document provides an overview of all the Python code you will learn in this course, by week. Don’t
worry if you do not know most of this code yet. After each week, you will know the code for that specific
week. If you still have questions, ask on Slack, in class, or search the web for more information about that
command in Python.

For the preparation of this document, extensive use was made of David M. Beazley, Python: FEssential
Reference, 4th edition (2009).

Week 1: Introduction

print("Hello, World!")

Hello, World!

Using Python as calculator

5+ 30 x 3

95
2 xx 3

(9]

.0/ 2

(9]

// 2

(¢

.0 // 2

Week 2: Variables and functions
Variables
a=4

type(a)

<class 'int'>
b=4.0

type (b)

<class 'float'>

s = "Pythons are scary!"

type(s)

<class 'str'>

Functions

def add_five(base):
return base + 5

add_five(10)

15
a =4
add_five(a)

9

Using default parameter values

def add(base, addition = 1):
return base + addition

add(5, 3)

8
add(5)

6

You will need to pay particular attention to where a variable is valid, the scope of the variable, so that you
do not get confused by code like this:

x =3
def subtract_five(base):
x =5

return base - x

subtract_five(x)

-2

Random numbers

import random

a = random.randint(1, 6)
a

3

type(a)

<class 'int'>

b = random.random()
b

0.8391695100732793
type (b)

<class 'float'>

Week 3: Conditions and flow

43
30

age_Mark
age_Toby

if age_Mark < age_Toby:

print ("Toby is older than Mark")
else:

print("Mark is older than Toby")

Mark is older than Toby

product = "book"
price = 18.95

if product != "book":
print ("The product is not a book")
else:

print("The product is a book")

The product is a book

if product == "book" and price > 15:
print ("The product is an expensive book")
elif product == "book":

print ("The product is a cheap book")
else:
print ("The product is not a book")

The product is an expensive book

Assigning a comparison to a variable

is_cheap_book = product == "book" and price <= 15
is_cheap_book

False

type (is_cheap_book)

<class 'bool'>

While loops

loan_amount = 100.0
initial_amount = loan_amount
interest_rate = 0.02

annuity = 5.0

payments = 0

while loan_amount > O:
loan_amount = loan_amount * (1 + interest_rate) - annuity
payments += 1

print("With a loan of " + format(initial_amount, ".2f") + \

" and an interest rate of " + format(interest_rate, ".2f") + \

", it takes " + format(payments, "d") + \

" payments of " + format(annuity, ".2f") + " to pay back the loan.")

With a loan of 100.00 and an interest rate of 0.02, it takes 26 payments of 5.00 to pay back the loan.

print("You will have paid " + format(payments * annuity + loan_amount, ".2f") + " in total.")

You will have paid 128.99 in total.

Week 4: Loops and lists
Lists

names = ["Dave", "Mark", "Ann", "Phil"]
names [2]

'"Ann'

names [1:3]

['Mark', 'Ann']

names[2] = "Jos"

names

['Dave', 'Mark', 'Jos', 'Phil'l
names.append ("Fredrik")

names

['Dave', 'Mark', 'Jos', 'Phil', 'Fredrik']
names.insert (2, "Sam")

names

['Dave', 'Mark', 'Sam', 'Jos', 'Phil', 'Fredrik'l]

messy_list = [1,"Dave",3.14, ["Mark", 7, 9, [100,101]], 10]
messy_list[3]

['Mark', 7, 9, [100, 101]]
messy_list[3][3]

[100, 101]

Loops

range (5)

range(0, 5)

for i in range(5):
print("This is iteration " + format(i, "d"))

This is iteration O
This is iteration 1
This is iteration 2
This is iteration 3
This is iteration 4

names = ["Dave", "Mark", "Ann", "Phil"]
for name in names:
print(name + " is in the list")

Dave is in the list
Mark is in the list
Ann is in the list

Phil is in the list

Dictionaries

stock_prices = {
"GOOG": 240.10,
"AAPL": 123.50,
"IBM": 87.50,
"MSFT": 53.13

if "AAPL" in stock_prices:
print(stock_prices["AAPL"])
else:
print ("AAPL not found")

123.5

for stock in stock_prices:
print("The price of " + stock + " is " + format(stock_prices[stock], ".2f"))

The price of GOOG is 240.10
The price of AAPL is 123.50
The price of IBM is 87.50

The price of MSFT is 53.13

Week 5: Working with text

s = "Hello, World!"

len(s)

13
s[:3]
'Hel'
s[7:12]

'World'

s + " It's a beautiful day!"

"Hello, World! It's a beautiful day!"
"'+ s + '", he said.'
'"Hello, World!", he said.'

Look very carefully at the use of quotation marks on that last one!

Conversion between numbers and strings

g = "23"
s.isnumeric()

type(s)

<class 'str'>

type(a)

<class 'int'>
s = "24.1093"
s.isnumeric()
False

a = float(s)
a

24.1093
type(s)

<class 'str'>

type(a)

<class 'float'>

format(a, ".2f")

'24.11"

Input of text from the user

import random
number = input("How many random numbers do you want? ")

if number.isnumeric():
result = []
for i in range(int(number)):
result.append(random.random())
print (result)
else:
print(”ERROR: Must enter a number!")

Week 6: Object-oriented programming

class Circle(object):

def __init__(self, name = "", radius = 0.0, x = 0.0, y = 0.0):
self.radius = radius
self.x = x
self.y =y
self .name = name

def set_center(self, x, y):
self.x = x
self.y =y

def set_radius(self, r):
self.radius = r

def set_name(self, s):
self.name = s

def blow_up(self, multiplier = 1.1):
self.radius *= multiplier

def __repr__(self):
return self.name + ": " + format(self.radius, ".2f") + \
" at (" + format(self.x, ".2f") + \
"," + format(self.y, ".2f") + ")"

c = Circle()

: 0.00 at (0.00,0.00)

c.set_name("Blue ball")
c.set_radius(2.0)
c.set_center(-1, 3)

C

Blue ball: 2.00 at (-1.00,3.00)
c.blow_up(1.5)

C

Blue ball: 3.00 at (-1.00,3.00)
c.blow_up()

C

Blue ball: 3.30 at (-1.00,3.00)
d = Circle("Red ball", 1.5, 1, 2)

d

Red ball: 1.50 at (1.00,2.00)

balls = [c, d]
balls

[Blue ball: 3.30 at (-1.00,3.00), Red ball: 1.50 at (1.00,2.00)]

Week 7: Working with files

An input file

line_number = 0

for line in open("POL42340_Autumn_2020_overview_python_code.Rmd") :
print (line.strip())
line_number += 1

if line_number ==
break

title: "POL 42340 Programming for Social Scientists: What you will know after each class"

An output file

log_file = open("test_log_file.txt", "w")

for i in range(4):

log file.write("Log line " + format(i, "2d4") + "\n")

12
12
12
12

log_file.close()

for line in open("test_log_file.txt"):
print(line.strip())

Log line O
Log line 1
Log line 2
Log line 3

import os

os.remove("test_log_file.txt")

Week 8: Handling exceptions (and tuples)

Catching errors

try:
for line in open("test.txt", "r"):
print(line)
except IOError as e:
print("Could not open file! " + e.strerror)

Could not open file! No such file or directory

Tuples
book_hhgg = ("The Hitchhiker's Guide to the Galaxy", 18.34)
book_tr = ("The Real Donald Trump", 2.50)

book_cap = ("The Great Capsize", 99.50)
books = [book_hhgg, book_tr, book_cap]

books

[("The Hitchhiker's Guide to the Galaxy", 18.34), ('The Real Donald Trump', 2.5), ('The Great Capsize',
books [0]

("The Hitchhiker's Guide to the Galaxy", 18.34)
books [0] [0]

"The Hitchhiker's Guide to the Galaxy"

10

type (books)

<class 'list'>

type (books [0])

<class 'tuple'>
type (books [0] [0])

<class 'str'>

title, price = books[0]
print("The book " + title + " has a price of " + format(price, ".2f"))

The book The Hitchhiker's Guide to the Galaxy has a price of 18.34
total_cost = 0
for book in books:
total_cost += book[1]
print("Total price: " + format(total_cost, ".2f"))

Total price: 120.34

total_cost = 0
for title, price in books:
total_cost += price
print("Total price: " + format(total_cost, ".2f"))

Total price: 120.34

budget = 100
total_price = 0
i=0

while total_price + books[i] [1] < budget:
total_price += books[i][1]
i+=1
print ("With my budget I end up buying " + format(i, "d") + " books, spending " \
+ format(total_price, ".2f"))

With my budget I end up buying 2 books, spending 20.84

Week 9: Working with libraries and GUIs

No specific code, but a general strengthening of your ability to search for documentation and use Python
libraries.

Week 10: Computer simulations and visualisation

No specific code, but a general strengthening of your ability to search for documentation and use Python
libraries.

11

And the rest

Some topics not covered here, that you might want to read up on later:

¢ Recursion

¢ Generators

e Coroutines

e Lambdas

o Unit testing

e The Python Library
e Python debugger

12

	Week 1: Introduction
	Using Python as calculator

	Week 2: Variables and functions
	Variables
	Functions
	Using default parameter values
	Random numbers

	Week 3: Conditions and flow
	Assigning a comparison to a variable
	While loops

	Week 4: Loops and lists
	Lists
	Loops
	Dictionaries

	Week 5: Working with text
	Conversion between numbers and strings
	Input of text from the user

	Week 6: Object-oriented programming
	Week 7: Working with files
	An input file
	An output file

	Week 8: Handling exceptions (and tuples)
	Catching errors
	Tuples

	Week 9: Working with libraries and GUIs
	Week 10: Computer simulations and visualisation
	And the rest

